sql >> Database teknologi >  >> RDS >> Sqlserver

Proaktive SQL Server-sundhedstjek, del 5:Ventestatistik

SQLskills-teamet elsker ventestatistikker. Hvis du kigger indlæggene igennem på denne blog (se Pauls indlæg om Knee-Jerk Wait Statistics) og på SQLskills-webstedet, vil du se indlæg fra os alle, der diskuterer værdien af ​​ventestatistikker, hvad vi leder efter, og hvorfor en bestemt ventetid er et problem. Paul skriver mest om dette, men vi starter typisk alle med ventestatistikker, når vi fejlfinder et præstationsproblem. Hvad betyder det i forhold til at være proaktiv?

For at få et komplet billede af, hvad ventestatistikker betyder under et præstationsproblem, skal du vide, hvad dine normale ventetider er. Det betyder proaktivt at fange disse oplysninger og bruge den baseline som reference. Hvis du ikke har disse data, vil du, når der opstår et ydeevneproblem, ikke vide, om PAGELATCH-ventinger er typiske i dit miljø (helt muligt), eller hvis du pludselig har et problem relateret til tempdb på grund af en ny kode, der blev tilføjet .

Ventstatistikdata

Jeg har tidligere udgivet et script, jeg bruger til at fange ventestatistikker, og det er et script, jeg har brugt i lang tid til kunder. Jeg har dog for nylig lavet ændringer i mit manuskript og justeret lidt på min metode. Lad mig forklare hvorfor...

Den grundlæggende forudsætning bag ventestatistikker er, at SQL Server sporer hver gang en tråd skal vente på "noget". Venter du på at læse en side fra disken? PAGEIOLATCH_XX vent. Venter du på at blive tildelt en lås, så du foretager en ændring af data? LCX_M_XXX vent. Venter du på en hukommelsesbevilling, så en forespørgsel kan udføres? RESOURCE_SEMAPHORE vent. Alle disse ventetider spores i sys.dm_os_wait_stats DMV, og dataene akkumuleres bare over tid... det er en kumulativ repræsentant for ventetiden.

For eksempel har jeg en SQL Server 2014-instans i en af ​​mine VM'er, der har været oppe og siden ca. 9:30 i morges:

SELECT [sqlserver_start_time] FROM [sys].[dm_os_sys_info];

SQL-serverens starttidspunkt

Hvis jeg nu ser for at se, hvordan mine ventestatistikker ser ud (husk, kumulative indtil nu) ved hjælp af Pauls script, ser jeg, at TRACEWRITE er min nuværende "standard" ventetid:

Aktuelle samlede ventetider

Ok, lad os nu introducere fem minutters tempdb-strid, og se, hvordan det påvirker min overordnede ventestatistik. Jeg har et script, som Jonathan tidligere har brugt til at skabe tempdb-strid, og jeg har sat det op, så det kører i 5 minutter:

USE AdventureWorks2012;
GO
 
SET NOCOUNT ON;
GO
 
DECLARE @CurrentTime SMALLDATETIME = SYSDATETIME(), @EndTime SMALLDATETIME = DATEADD(MINUTE, 5, SYSDATETIME());
WHILE @CurrentTime < @EndTime
BEGIN
  IF OBJECT_ID('tempdb..#temp') IS NOT NULL
  BEGIN
    DROP TABLE #temp;
  END
 
  CREATE TABLE #temp
  (
    ProductID INT PRIMARY KEY,
    OrderQty INT,
    TotalDiscount MONEY,
    LineTotal MONEY,
    Filler NCHAR(500) DEFAULT(N'') NOT NULL
  );
 
  INSERT INTO #temp(ProductID, OrderQty, TotalDiscount, LineTotal)
  SELECT
    sod.ProductID,
    SUM(sod.OrderQty),
    SUM(sod.LineTotal),
    SUM(sod.OrderQty + sod.UnitPriceDiscount)
  FROM Sales.SalesOrderDetail AS sod
  GROUP BY ProductID;
 
  DECLARE
    @ProductNumber NVARCHAR(25),
    @Name NVARCHAR(50),
    @TotalQty INT,
    @SalesTotal MONEY,
    @TotalDiscount MONEY;
 
  SELECT
    @ProductNumber = p.ProductNumber,
    @Name = p.Name,
    @TotalQty = t1.OrderQty,
    @SalesTotal = t1.LineTotal,
    @TotalDiscount = t1.TotalDiscount
  FROM Production.Product AS p
  JOIN #temp AS t1 ON p.ProductID = t1.ProductID;
 
  SET @CurrentTime = SYSDATETIME()
END

Jeg brugte en kommandoprompt til at starte 10 sessioner, der kørte dette script, og samtidig kørte jeg et script, der fangede mine overordnede ventestatistikker, et øjebliksbillede af ventetiden over en 5 minutters periode og derefter den overordnede ventestatistik igen. Først en lille hemmelighed, da vi ignorerer godartede ventetider hele tiden, kan det være nyttigt at fylde dem i en tabel, så du kan referere til et objekt i stedet for konstant at skulle hardkode en liste over ekskluderingsstrenge i en forespørgsel. Så:

USE SQLskills_WaitStats;
GO
 
CREATE TABLE dbo.WaitsToIgnore(WaitType SYSNAME PRIMARY KEY);
 
INSERT dbo.WaitsToIgnore(WaitType) VALUES(N'BROKER_EVENTHANDLER'),
  (N'BROKER_RECEIVE_WAITFOR'), (N'BROKER_TASK_STOP'), (N'BROKER_TO_FLUSH'),
  (N'BROKER_TRANSMITTER'),     (N'CHECKPOINT_QUEUE'), (N'CHKPT'),
  (N'CLR_AUTO_EVENT'),         (N'CLR_MANUAL_EVENT'), (N'CLR_SEMAPHORE'),
  (N'DBMIRROR_DBM_EVENT'),     (N'DBMIRROR_EVENTS_QUEUE'),
  (N'DBMIRROR_WORKER_QUEUE'),  (N'DBMIRRORING_CMD'),  (N'DIRTY_PAGE_POLL'),
  (N'DISPATCHER_QUEUE_SEMAPHORE'),  (N'EXECSYNC'),    (N'FSAGENT'),
  (N'FT_IFTS_SCHEDULER_IDLE_WAIT'), (N'FT_IFTSHC_MUTEX'), (N'HADR_CLUSAPI_CALL'),
  (N'HADR_FILESTREAM_IOMGR_IOCOMPLETIO(N'), (N'HADR_LOGCAPTURE_WAIT'),
  (N'HADR_NOTIFICATION_DEQUEUE'), (N'HADR_TIMER_TASK'), (N'HADR_WORK_QUEUE'),
  (N'KSOURCE_WAKEUP'),         (N'LAZYWRITER_SLEEP'),   (N'LOGMGR_QUEUE'),
  (N'ONDEMAND_TASK_QUEUE'),    (N'PWAIT_ALL_COMPONENTS_INITIALIZED'),
  (N'QDS_PERSIST_TASK_MAIN_LOOP_SLEEP'), 
  (N'QDS_CLEANUP_STALE_QUERIES_TASK_MAIN_LOOP_SLEEP'), 
  (N'REQUEST_FOR_DEADLOCK_SEARCH'), (N'RESOURCE_QUEUE'), (N'SERVER_IDLE_CHECK'),
  (N'SLEEP_BPOOL_FLUSH'),   (N'SLEEP_DBSTARTUP'), (N'SLEEP_DCOMSTARTUP'),
  (N'SLEEP_MASTERDBREADY'), (N'SLEEP_MASTERMDREADY'), (N'SLEEP_MASTERUPGRADED'),
  (N'SLEEP_MSDBSTARTUP'),   (N'SLEEP_SYSTEMTASK'),    (N'SLEEP_TASK'),
  (N'SLEEP_TEMPDBSTARTUP'), (N'SNI_HTTP_ACCEPT'), (N'SP_SERVER_DIAGNOSTICS_SLEEP'),
  (N'SQLTRACE_BUFFER_FLUSH'), (N'SQLTRACE_INCREMENTAL_FLUSH_SLEEP'),
  (N'SQLTRACE_WAIT_ENTRIES'), (N'WAIT_FOR_RESULTS'), (N'WAITFOR'),
  (N'WAITFOR_TASKSHUTDOW(N'), (N'WAIT_XTP_HOST_WAIT'), 
  (N'WAIT_XTP_OFFLINE_CKPT_NEW_LOG'), (N'WAIT_XTP_CKPT_CLOSE'), 
  (N'XE_DISPATCHER_JOIN'), (N'XE_DISPATCHER_WAIT'), (N'XE_TIMER_EVENT');

Nu er vi klar til at fange vores ventetider:

/* Capture the instance start time
 
(in this case, time since waits have been accumulating) */
 
SELECT [sqlserver_start_time] FROM [sys].[dm_os_sys_info];
GO
 
/* Get the current time */
 
SELECT SYSDATETIME() AS [Before Test 1];
 
/* Get aggregate waits until now */
 
WITH [Waits] AS
(
  SELECT
    [wait_type],
    [wait_time_ms] / 1000.0 AS [WaitS],
    ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
    [signal_wait_time_ms] / 1000.0 AS [SignalS],
    [waiting_tasks_count] AS [WaitCount],
    100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
    ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
  FROM sys.dm_os_wait_stats
  WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_Waits.WaitsToIgnore)
  AND [waiting_tasks_count] > 0
)
SELECT
  MAX ([W1].[wait_type]) AS [WaitType],
  CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
  CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
  CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
  MAX ([W1].[WaitCount]) AS [WaitCount],
  CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
  CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgWait_S],
  CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgRes_S],
  CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95; -- percentage threshold
GO
 
/* Get the current time */
 
SELECT SYSDATETIME() AS [Before Test 2];
 
/* Capture a snapshot of waits over a 5 minute period */
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
  DROP TABLE [##SQLskillsStats1];
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
  DROP TABLE [##SQLskillsStats2];
GO
 
SELECT [wait_type], [waiting_tasks_count], [wait_time_ms], 
  [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats1
FROM sys.dm_os_wait_stats;
GO
 
WAITFOR DELAY '00:05:00';
GO
 
SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
  [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats2
FROM sys.dm_os_wait_stats;
GO
 
WITH [DiffWaits] AS
(
  SELECT    -- Waits that weren't in the first snapshot
      [ts2].[wait_type],
      [ts2].[wait_time_ms],
      [ts2].[signal_wait_time_ms],
      [ts2].[waiting_tasks_count]
    FROM [##SQLskillsStats2] AS [ts2]
    LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
    ON [ts2].[wait_type] = [ts1].[wait_type]
    WHERE [ts1].[wait_type] IS NULL
    AND [ts2].[wait_time_ms] > 0
  UNION
  SELECT    -- Diff of waits in both snapshots
      [ts2].[wait_type],
      [ts2].[wait_time_ms] - [ts1].[wait_time_ms] AS [wait_time_ms],
      [ts2].[signal_wait_time_ms] - [ts1].[signal_wait_time_ms] AS [signal_wait_time_ms],
      [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] AS [waiting_tasks_count]
    FROM [##SQLskillsStats2] AS [ts2]
    LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
    ON [ts2].[wait_type] = [ts1].[wait_type]
    WHERE [ts1].[wait_type] IS NOT NULL
    AND [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] > 0
    AND [ts2].[wait_time_ms] - [ts1].[wait_time_ms] > 0
),
[Waits] AS
(
  SELECT
    [wait_type],
    [wait_time_ms] / 1000.0 AS [WaitS],
    ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
    [signal_wait_time_ms] / 1000.0 AS [SignalS],
    [waiting_tasks_count] AS [WaitCount],
    100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
    ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
  FROM [DiffWaits]
  WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
)
SELECT
  [W1].[wait_type] AS [WaitType],
  CAST ([W1].[WaitS] AS DECIMAL (16, 2)) AS [Wait_S],
  CAST ([W1].[ResourceS] AS DECIMAL (16, 2)) AS [Resource_S],
  CAST ([W1].[SignalS] AS DECIMAL (16, 2)) AS [Signal_S],
  [W1].[WaitCount] AS [WaitCount],
  CAST ([W1].[Percentage] AS DECIMAL (5, 2)) AS [Percentage],
  CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgWait_S],
  CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgRes_S],
  CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS], 
  [W1].[ResourceS], [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95; -- percentage threshold
GO
 
-- Cleanup
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
  DROP TABLE [##SQLskillsStats1];
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
  DROP TABLE [##SQLskillsStats2];
GO
 
/* Get the current time */
 
SELECT SYSDATETIME() AS [After Test 1];
 
/* Get aggregate waits again */
 
WITH [Waits] AS
(
  SELECT
    [wait_type],
    [wait_time_ms] / 1000.0 AS [WaitS],
    ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
    [signal_wait_time_ms] / 1000.0 AS [SignalS],
    [waiting_tasks_count] AS [WaitCount],
    100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
    ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
  FROM sys.dm_os_wait_stats
  WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
  AND [waiting_tasks_count] > 0
)
SELECT
  MAX ([W1].[wait_type]) AS [WaitType],
  CAST (MAX ([W1].[WaitS]) AS DECIMAL (16,2)) AS [Wait_S],
  CAST (MAX ([W1].[ResourceS]) AS DECIMAL (16,2)) AS [Resource_S],
  CAST (MAX ([W1].[SignalS]) AS DECIMAL (16,2)) AS [Signal_S],
  MAX ([W1].[WaitCount]) AS [WaitCount],
  CAST (MAX ([W1].[Percentage]) AS DECIMAL (5,2)) AS [Percentage],
  CAST ((MAX ([W1].[WaitS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgWait_S],
  CAST ((MAX ([W1].[ResourceS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgRes_S],
  CAST ((MAX ([W1].[SignalS]) / MAX ([W1].[WaitCount])) AS DECIMAL (16,4)) AS [AvgSig_S]
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum]
HAVING SUM ([W2].[Percentage]) - MAX ([W1].[Percentage]) < 95; -- percentage threshold
GO
 
/* Get the current time */
 
SELECT SYSDATETIME() AS [After Test 2];

Hvis vi ser på outputtet, kan vi se, at mens de 10 forekomster af scriptet til at skabe tempdb-konflikt kørte, var SOS_SCHEDULER_YIELD vores mest udbredte ventetype, og vi havde også PAGELATCH_XX ventetider, som forventet:

Venter oversigt før, under og efter test

Hvis vi ser på de gennemsnitlige ventetider EFTER testen er gennemført, ser vi igen TRACEWRITE som den højeste ventetid, og vi ser SOS_SCHEDULER_YIELD som en ventetid. Afhængigt af, hvad der ellers kører i miljøet, kan denne ventetid vedblive eller ikke fortsætte i vores bedste ventetider i lang tid, og den kan muligvis boble op som en ventetype til at undersøge.

Proaktiv registrering af ventestatistikker

Som standard er ventestatistikker kumulative . Ja, du kan rydde dem til enhver tid ved hjælp af DBCC SQLPERF, men jeg oplever, at de fleste mennesker ikke gør det regelmæssigt, de lader dem bare akkumulere. Og det er fint, men forstå, hvordan det påvirker dine data. Hvis du kun genstarter din instans, når du patcher den, eller når der er et problem (som forhåbentlig sker sjældent), så kan disse data akkumuleres i flere måneder. Jo flere data du har, jo sværere er det at se små variationer... ting, der kan være problemer med ydeevnen. Selv når du har et "stort problem", der påvirker hele din server i flere minutter, som vi gjorde her med tempdb, skaber det muligvis ikke nok af en ændring i dine data til at blive opdaget i de kumulerede data. Du skal snarere tage et øjebliksbillede af dataene (fange dem, vente et par minutter, fange dem igen og derefter differentiere dataene) for at se, hvad der virkelig foregår lige nu .

Som sådan, hvis du blot tager et øjebliksbillede af ventestatistikker med få timers mellemrum, så viser de data, du har indsamlet, bare den fortsatte sammenlægning over tid. Du kan Forskel disse snapshots for at få en forståelse af ydeevne mellem snapshotsene, men jeg kan fortælle dig, at du skal skrive denne kode mod et stort datasæt, at det er en smerte (men jeg er ikke en udvikler, så måske er det nemt for dig ).

Min traditionelle metode til at indfange ventestatistikker var at tage et øjebliksbillede af sys.dm_os_wait_stats med få timers mellemrum ved at bruge Pauls originale script:

USE [BaselineData];
GO
 
IF NOT EXISTS (SELECT * FROM [sys].[tables] WHERE [name] = N'SQLskills_WaitStats_OldMethod')
BEGIN
  CREATE TABLE [dbo].[SQLskills_WaitStats_OldMethod]
  (
    [RowNum] [bigint] IDENTITY(1,1) NOT NULL,
    [CaptureDate] [datetime] NULL,
    [WaitType] [nvarchar](120) NULL,
    [Wait_S] [decimal](14, 2) NULL,
    [Resource_S] [decimal](14, 2) NULL,
    [Signal_S] [decimal](14, 2) NULL,
    [WaitCount] [bigint] NULL,
    [Percentage] [decimal](4, 2) NULL,
    [AvgWait_S] [decimal](14, 4) NULL,
    [AvgRes_S] [decimal](14, 4) NULL,
    [AvgSig_S] [decimal](14, 4) NULL
  );
 
  CREATE CLUSTERED INDEX [CI_SQLskills_WaitStats_OldMethod] 
    ON [dbo].[SQLskills_WaitStats_OldMethod] ([CaptureDate],[RowNum]);
END
GO
 
/* Query to use in scheduled job */
 
USE [BaselineData];
GO
 
INSERT INTO [dbo].[SQLskills_WaitStats_OldMethod]
(
  [CaptureDate] ,
  [WaitType] ,
  [Wait_S] ,
  [Resource_S] ,
  [Signal_S] ,
  [WaitCount] ,
  [Percentage] ,
  [AvgWait_S] ,
  [AvgRes_S] ,
  [AvgSig_S]
)
EXEC ('WITH [Waits] AS (SELECT
      [wait_type],
      [wait_time_ms] / 1000.0 AS [WaitS],
      ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
      [signal_wait_time_ms] / 1000.0 AS [SignalS],
      [waiting_tasks_count] AS [WaitCount],
      100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
      ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
    FROM sys.dm_os_wait_stats
    WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
  )
  SELECT
    GETDATE(),
    [W1].[wait_type] AS [WaitType],
    CAST ([W1].[WaitS] AS DECIMAL(14, 2)) AS [Wait_S],
    CAST ([W1].[ResourceS] AS DECIMAL(14, 2)) AS [Resource_S],
    CAST ([W1].[SignalS] AS DECIMAL(14, 2)) AS [Signal_S],
    [W1].[WaitCount] AS [WaitCount],
    CAST ([W1].[Percentage] AS DECIMAL(4, 2)) AS [Percentage],
    CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgWait_S],
    CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgRes_S],
    CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (14, 4)) AS [AvgSig_S]
  FROM [Waits] AS [W1]
  INNER JOIN [Waits] AS [W2]
  ON [W2].[RowNum] <= [W1].[RowNum]
  GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS], [W1].[ResourceS], 
    [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
  HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95;'
);

Jeg ville så gå igennem og se på den øverste ventetid for hvert øjebliksbillede, for eksempel:

SELECT [w].[CaptureDate] ,
  [w].[WaitType] ,
  [w].[Percentage] ,
  [w].[Wait_S] ,
  [w].[WaitCount] ,
  [w].[AvgWait_S]
FROM   [dbo].[SQLskills_WaitStats_OldMethod] w
JOIN 
(
  SELECT   MIN([RowNum]) AS [RowNumber] , [CaptureDate]
  FROM     [dbo].[SQLskills_WaitStats_OldMethod]
  WHERE   [CaptureDate] IS NOT NULL
  AND [CaptureDate] > GETDATE() - 60
  GROUP BY [CaptureDate]
) m ON [w].[RowNum] = [m].[RowNumber]
ORDER BY [w].[CaptureDate];

Min nye alternative metode er at adskille et par snapshots af ventestatistikker (med to til tre minutter mellem snapshots) hver time eller deromkring. Disse oplysninger fortæller mig så præcist, hvad systemet ventede på på det tidspunkt:

USE [BaselineData];
GO
 
IF NOT EXISTS ( SELECT * FROM   [sys].[tables] WHERE   [name] = N'SQLskills_WaitStats')
BEGIN
  CREATE TABLE [dbo].[SQLskills_WaitStats]
  (
    [RowNum] [bigint] IDENTITY(1,1) NOT NULL,
    [CaptureDate] [datetime] NOT NULL DEFAULT (sysdatetime()),
    [WaitType] [nvarchar](60) NOT NULL,
    [Wait_S] [decimal](16, 2) NULL,
    [Resource_S] [decimal](16, 2) NULL,
    [Signal_S] [decimal](16, 2) NULL,
    [WaitCount] [bigint] NULL,
    [Percentage] [decimal](5, 2) NULL,
    [AvgWait_S] [decimal](16, 4) NULL,
    [AvgRes_S] [decimal](16, 4) NULL,
    [AvgSig_S] [decimal](16, 4) NULL
  ) ON [PRIMARY];
 
  CREATE CLUSTERED INDEX [CI_SQLskills_WaitStats] 
    ON [dbo].[SQLskills_WaitStats] ([CaptureDate],[RowNum]);
END
 
/* Query to use in scheduled job */
 
USE [BaselineData];
GO
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
  DROP TABLE [##SQLskillsStats1];
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
  DROP TABLE [##SQLskillsStats2];
GO
 
/* Capture wait stats */
 
SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
  [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats1
FROM sys.dm_os_wait_stats;
GO
 
/* Wait some amount of time */
 
WAITFOR DELAY '00:02:00';
GO
 
/* Capture wait stats again */
 
SELECT [wait_type], [waiting_tasks_count], [wait_time_ms],
  [max_wait_time_ms], [signal_wait_time_ms]
INTO ##SQLskillsStats2
FROM sys.dm_os_wait_stats;
GO
 
/* Diff the waits */
 
WITH [DiffWaits] AS
(
  SELECT   -- Waits that weren't in the first snapshot
      [ts2].[wait_type],
      [ts2].[wait_time_ms],
      [ts2].[signal_wait_time_ms],
      [ts2].[waiting_tasks_count]
    FROM [##SQLskillsStats2] AS [ts2]
    LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
    ON [ts2].[wait_type] = [ts1].[wait_type]
    WHERE [ts1].[wait_type] IS NULL
    AND [ts2].[wait_time_ms] > 0
  UNION
  SELECT   -- Diff of waits in both snapshots
      [ts2].[wait_type],
      [ts2].[wait_time_ms] - [ts1].[wait_time_ms] AS [wait_time_ms],
      [ts2].[signal_wait_time_ms] - [ts1].[signal_wait_time_ms] AS [signal_wait_time_ms],
      [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] AS [waiting_tasks_count]
    FROM [##SQLskillsStats2] AS [ts2]
    LEFT OUTER JOIN [##SQLskillsStats1] AS [ts1]
    ON [ts2].[wait_type] = [ts1].[wait_type]
    WHERE [ts1].[wait_type] IS NOT NULL
    AND [ts2].[waiting_tasks_count] - [ts1].[waiting_tasks_count] > 0
    AND [ts2].[wait_time_ms] - [ts1].[wait_time_ms] > 0
),
[Waits] AS
(
  SELECT
    [wait_type],
    [wait_time_ms] / 1000.0 AS [WaitS],
    ([wait_time_ms] - [signal_wait_time_ms]) / 1000.0 AS [ResourceS],
    [signal_wait_time_ms] / 1000.0 AS [SignalS],
    [waiting_tasks_count] AS [WaitCount],
    100.0 * [wait_time_ms] / SUM ([wait_time_ms]) OVER() AS [Percentage],
    ROW_NUMBER() OVER(ORDER BY [wait_time_ms] DESC) AS [RowNum]
  FROM [DiffWaits]
  WHERE [wait_type] NOT IN (SELECT WaitType FROM SQLskills_WaitStats.dbo.WaitsToIgnore)
)
INSERT INTO [BaselineData].[dbo].[SQLskills_WaitStats]
(
  [WaitType] ,
  [Wait_S] ,
  [Resource_S] ,
  [Signal_S] ,
  [WaitCount] ,
  [Percentage] ,
  [AvgWait_S] ,
  [AvgRes_S] ,
  [AvgSig_S]
)
SELECT
  [W1].[wait_type],
  CAST ([W1].[WaitS] AS DECIMAL (16, 2)) ,
  CAST ([W1].[ResourceS] AS DECIMAL (16, 2)) ,
  CAST ([W1].[SignalS] AS DECIMAL (16, 2)) ,
  [W1].[WaitCount] ,
  CAST ([W1].[Percentage] AS DECIMAL (5, 2)) ,
  CAST (([W1].[WaitS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) ,
  CAST (([W1].[ResourceS] / [W1].[WaitCount]) AS DECIMAL (16, 4)) ,
  CAST (([W1].[SignalS] / [W1].[WaitCount]) AS DECIMAL (16, 4))
FROM [Waits] AS [W1]
INNER JOIN [Waits] AS [W2]
ON [W2].[RowNum] <= [W1].[RowNum]
GROUP BY [W1].[RowNum], [W1].[wait_type], [W1].[WaitS], [W1].[ResourceS], 
  [W1].[SignalS], [W1].[WaitCount], [W1].[Percentage]
HAVING SUM ([W2].[Percentage]) - [W1].[Percentage] < 95; -- percentage threshold
GO
 
/* Clean up the temp tables */
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats1')
  DROP TABLE [##SQLskillsStats1];
 
IF EXISTS (SELECT * FROM [tempdb].[sys].[objects] WHERE [name] = N'##SQLskillsStats2')
  DROP TABLE [##SQLskillsStats2];

Er min nye metode bedre? Det tror jeg, da det er en bedre repræsentation af, hvordan ventetiden ser ud lige på fangsttidspunktet, og det stadig prøver med jævne mellemrum. For begge metoder ser jeg normalt for at se, hvad den højeste ventetid var på fangetidspunktet:

SELECT [w].[CaptureDate] ,
  [w].[WaitType] ,
  [w].[Percentage] ,
  [w].[Wait_S] ,
  [w].[WaitCount] ,
  [w].[AvgWait_S]
FROM   [dbo].[SQLskills_WaitStats] w
JOIN
(
  SELECT MIN([RowNum]) AS [RowNumber], [CaptureDate]
  FROM     [dbo].[SQLskills_WaitStats]
  WHERE   [CaptureDate] > GETDATE() - 30
  GROUP BY [CaptureDate]
) m 
ON [w].[RowNum] = [m].[RowNumber]
ORDER BY [w].[CaptureDate];

Resultater:

Top vente på hvert øjebliksbillede (eksempeloutput)

Ulempen, som eksisterede med mit originale script, er, at det stadig bare et øjebliksbillede . Jeg kan trende de højeste ventetider over tid, men hvis der er et problem, der opstår mellem snapshots, vil det ikke dukke op. Så hvad kan du gøre?

Du kan øge frekvensen af ​​dine optagelser. Måske i stedet for at fange ventestatistikker hver time, fanger du dem hvert 15. minut. Eller måske hver 10. Jo oftere du fanger dataene, jo større chance har du for at fange et præstationsproblem.

Din anden mulighed ville være at bruge et tredjepartsprogram, såsom SQL Sentry Performance Advisor, til at overvåge ventetider. Performance Advisor henter nøjagtig samme information fra sys.dm_os_wait_stats DMV. Den forespørger sys.dm_os_wait_stats hvert 10. sekund med en meget enkel forespørgsel:

SELECT * FROM sys.dm_os_wait_stats WHERE wait_time_ms > 0;

Bag kulisserne tager Performance Advisor derefter disse data og tilføjer dem til sin overvågningsdatabase. Når du ser dataene, fjernes godartede ventetider, og deltaerne beregnes for dig. Derudover har Performance Advisor et fantastisk display (at se på dashboardet er meget pænere end tekstoutputtet ovenfor), og du kan tilpasse samlingen, hvis du vil. Hvis vi ser på Performance Advisor og ser på data fra hele dagen, kan jeg nemt se, hvor jeg havde et problem i SQL Server Waits-ruden:

Performance Advisor Dashboard for dagen

Og jeg kan så bore i det tidsrum efter kl. 15.00 for yderligere at undersøge, hvad der skete:

Drill ned i PA under ydeevneproblemet

Overvågning på egen hånd, medmindre jeg tilfældigvis kom med et øjebliksbillede af ventestatistikker på samme tid med et script, vil jeg have savnet at fange nogen data om dette præstationsproblem. Fordi Performance Advisor gemmer oplysningerne i en længere periode, så gør det du, hvis du har et splid i ydeevnen. have ventestatistikdataene (sammen med en masse andre oplysninger) tilgængelige for at hjælpe med at undersøge problemet, og du har også historiske data, så du forstår, hvilke normale ventetider der findes i dit miljø.

Oversigt

Uanset hvilken metode du vælger til at overvåge ventetider, er det først vigtigt at forstå hvordan SQL Server gemmer venteoplysninger, så du forstår de data, du ser, hvis du fanger dem regelmæssigt. Hvis du skal rulle dine egne scripts for at fange ventetider, er du begrænset i, at du måske ikke fanger afvigelser så let, som du kunne med tredjepartssoftware. Men det er ok – at have en vis mængde baseline-data, så du kan begynde at forstå, hvad der er "normalt" er bedre end slet ikke at have noget . Når du bygger dit lager og begynder at blive fortrolig med et miljø, kan du skræddersy dine optagelsesscripts efter behov for at løse eventuelle problemer, der måtte eksistere. Hvis du har fordelen af ​​tredjepartssoftware, skal du bruge disse oplysninger fuldt ud og sikre dig, at du forstår, hvordan ventetider indsamles og opbevares.


  1. Avanceret partitionsmatchning for partitionsmæssig joinforbindelse

  2. SQL Query Where Column ='' returnerer Emoji-tegn 🎃 og 🍰

  3. Installer Apache, MySQL 8 eller MariaDB 10 og PHP 7 på CentOS 7

  4. Sådan konverteres Unix-epoke til et tidsstempel