sql >> Database teknologi >  >> RDS >> Oracle

Fremskynd op til_sql(), når du skriver Pandas DataFrame til Oracle-database ved hjælp af SqlAlchemy og cx_Oracle

Pandas + SQLAlchemy gemmer som standard alle object (streng) kolonner som CLOB i Oracle DB, hvilket gør indsættelse ekstremt langsom.

Her er nogle tests:

import pandas as pd
import cx_Oracle
from sqlalchemy import types, create_engine

#######################################################
### DB connection strings config
#######################################################
tns = """
  (DESCRIPTION =
    (ADDRESS = (PROTOCOL = TCP)(HOST = my-db-scan)(PORT = 1521))
    (CONNECT_DATA =
      (SERVER = DEDICATED)
      (SERVICE_NAME = my_service_name)
    )
  )
"""

usr = "test"
pwd = "my_oracle_password"

engine = create_engine('oracle+cx_oracle://%s:%[email protected]%s' % (usr, pwd, tns))

# sample DF [shape: `(2000, 11)`]
# i took your 2 rows DF and replicated it: `df = pd.concat([df]* 10**3, ignore_index=True)`
df = pd.read_csv('/path/to/file.csv')

DF info:

In [61]: df.shape
Out[61]: (2000, 11)

In [62]: df.info()
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 2000 entries, 0 to 1999
Data columns (total 11 columns):
id               2000 non-null int64
name             2000 non-null object
premium          2000 non-null float64
created_date     2000 non-null datetime64[ns]
init_p           2000 non-null float64
term_number      2000 non-null int64
uprate           1000 non-null float64
value            2000 non-null int64
score            2000 non-null float64
group            2000 non-null int64
action_reason    2000 non-null object
dtypes: datetime64[ns](1), float64(4), int64(4), object(2)
memory usage: 172.0+ KB

Lad os se, hvor lang tid det tager at gemme det i Oracle DB:

In [57]: df.shape
Out[57]: (2000, 11)

In [58]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace')
1 loop, best of 1: 16 s per loop

I Oracle DB (vær opmærksom på CLOB's):

AAA> desc test.test_table
 Name                            Null?    Type
 ------------------------------- -------- ------------------
 ID                                       NUMBER(19)
 NAME                                     CLOB        #  !!!
 PREMIUM                                  FLOAT(126)
 CREATED_DATE                             DATE
 INIT_P                                   FLOAT(126)
 TERM_NUMBER                              NUMBER(19)
 UPRATE                                   FLOAT(126)
 VALUE                                    NUMBER(19)
 SCORE                                    FLOAT(126)
 group                                    NUMBER(19)
 ACTION_REASON                            CLOB        #  !!!

Lad os nu instruere pandaer til at gemme alle object kolonner som VARCHAR-datatyper:

In [59]: dtyp = {c:types.VARCHAR(df[c].str.len().max())
    ...:         for c in df.columns[df.dtypes == 'object'].tolist()}
    ...:

In [60]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp)
1 loop, best of 1: 335 ms per loop

Denne gang var det ca. 48 gange hurtigere

Tjek i Oracle DB:

 AAA> desc test.test_table
 Name                          Null?    Type
 ----------------------------- -------- ---------------------
 ID                                     NUMBER(19)
 NAME                                   VARCHAR2(13 CHAR)        #  !!!
 PREMIUM                                FLOAT(126)
 CREATED_DATE                           DATE
 INIT_P                                 FLOAT(126)
 TERM_NUMBER                            NUMBER(19)
 UPRATE                                 FLOAT(126)
 VALUE                                  NUMBER(19)
 SCORE                                  FLOAT(126)
 group                                  NUMBER(19)
 ACTION_REASON                          VARCHAR2(8 CHAR)        #  !!!

Lad os teste det med 200.000 rækker DF:

In [69]: df.shape
Out[69]: (200000, 11)

In [70]: %timeit -n 1 -r 1 df.to_sql('test_table', engine, index=False, if_exists='replace', dtype=dtyp, chunksize=10**4)
1 loop, best of 1: 4.68 s per loop

Det tog ~5 sekunder for 200K rækker DF i mit testmiljø (ikke det hurtigste).

Konklusion: brug følgende trick for eksplicit at specificere dtype for alle DF-kolonner af object dtype, når du gemmer DataFrames til Oracle DB. Ellers vil det blive gemt som CLOB-datatype, hvilket kræver særlig behandling og gør det meget langsomt

dtyp = {c:types.VARCHAR(df[c].str.len().max())
        for c in df.columns[df.dtypes == 'object'].tolist()}

df.to_sql(..., dtype=dtyp)


  1. Google BigQuery ODBC-driver

  2. SEC_TO_TIME() Eksempler – MySQL

  3. Valg af data fra to forskellige servere i SQL Server

  4. hvordan tilføjer man superprivilegier til mysql-databasen?